

Agilent Seahorse XF Mito Fuel Flex Test Kit

For use with Agilent Seahorse XF Extracellular Flux Analyzers

User Manual Kit 103260-100

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2017

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

103260-400

Kit Part Number

103260-100

Edition

First edition, March 2017 Revision C0

Printed in USA

Agilent Technologies, Inc. 2850 Centerville Road Wilmington, DE 19808-1610 USA

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract. Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than **Restricted Rights as defined in FAR** 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14

(June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

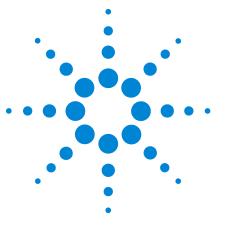
WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Contents

Introduction

Assay Background 5 Glossary 10


Kit Information

Kit Contents 11	
Kit Shipping and Storage	11
Additional Required Items	12

Assay Workflow

Day prior to assay	14
Day of Assay 14	
Running the Assay	20
Data Analysis 21	

Frequently Asked Questions

Agilent Seahorse XF Mito Fuel Flex Test Kit User Manual

Introduction

Assay Background 5 Glossary 10

Assay Background

The Agilent Seahorse XF Mito Fuel Flex Test is a method for measuring mitochondrial fuel usage in live cells. In combination with the Agilent Seahorse XFe/XF96 or Agilent Seahorse XFe/XF24 Analyzer, the Agilent Seahorse XF Mito Fuel Flex Test Kit measures the dependency, capacity, and flexibility of cells to oxidize three mitochondrial fuels:

- Glucose (pyruvate)
- Glutamine (glutamate)
- Long-chain fatty acids.

The Seahorse XF Mito Fuel Flex Test determines the rate of oxidation of each fuel by measuring mitochondrial respiration [the oxygen consumption rate, (OCR)] of cells in the presence or absence of fuel pathway inhibitors (Figure 1 on page 6). Sequentially inhibiting the pathway of interest followed by the two alternative pathways enables the calculation of how dependent the cells are on the pathway of interest to meet basal energy demand (Figure 2 on page 7). Dependency indicates that the cells' mitochondria are unable to compensate for the blocked pathway by oxidizing other fuels. Inhibiting the two alternative pathways followed by the pathway of interest enables the calculation of cells' mitochondrial capacity to meet energy demand (Figure 3 on page 8). Fuel Flexibility is calculated by subtracting the Fuel Dependency from the Fuel Capacity for the pathway of interest (Figure 4 on page 9). Flexibility indicates the cells' mitochondria have the ability to compensate for the inhibited pathway by using other pathways to fuel mitochondrial respiration. The presence of dependency and absence of flexibility demonstrates that the mitochondria require that fuel pathway to maintain basal OCR.

The Seahorse XF Mito Fuel Flex Test Kit contains three pathway inhibitors required to determine the dependency, capacity, and flexibility of cells for glucose, glutamine and long chain fatty acids.

- **UK5099** An inhibitor of the glucose oxidation pathway. UK5099 blocks the mitochondrial pyruvate carrier (MPC). Cells convert glucose to pyruvate through glycolysis. Pyruvate can be transported into the mitochondria and oxidized by the TCA cycle.
- **BPTES** An inhibitor of the glutamine oxidation pathway. BPTES is an allosteric inhibitor of glutaminase (GLS1). Glutaminase converts glutamine to glutamate, glutamate is then converted to alpha-ketoglutarate, and oxidized by the TCA cycle.
- **Etomoxir** An inhibitor of long chain fatty acid oxidation. Etomoxir inhibits carnitine palmitoyl-transferase 1A (CPT1A), which is critical for translocating long chain fatty acids from the cytosol into the mitochondria for beta oxidation.

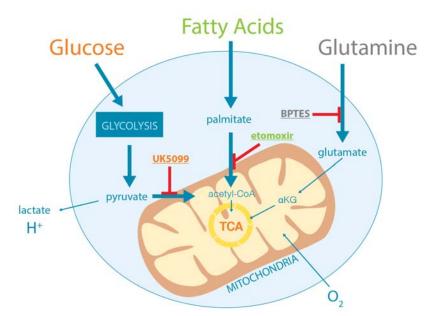


Figure 1 Principle of the Agilent Seahorse XF Mito Fuel Flex Test Energy produced by cells can be derived from mitochondrial oxidation of glucose, glutamine, and fatty acids. The cells' mitochondrial dependency on and flexibility for each of these fuel sources is determined by measuring the decrease in fuel oxidation (decline in oxygen consumption rate) upon addition of one or more inhibitors.

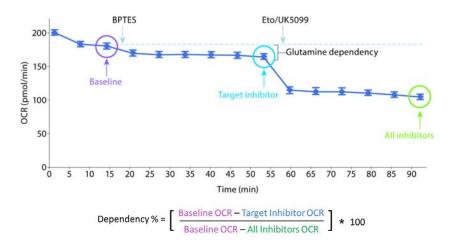



Figure 2 Fuel Dependency: Glutamine Oxidation Pathway Example Fuel Dependency is tested by first injecting an inhibitor of the target pathway, followed by inhibition of the two alternative pathways. Dependency is calculated using the equation shown here. In this example, HepG2 cells were tested for Glutamine Pathway Dependency (n=3). BPTES was injected following the third rate measurement (Baseline measurement). The sixth rate measurement following this injection is used for the calculation to allow sufficient time for the compound to have a complete effect (Target Inhibitor measurement). The final rate measurement (All Inhibitors) is used to complete the equation.

7

Figure 3 Fuel Capacity: Glutamine Oxidation Pathway Example Fuel Capacity is tested by first injecting inhibitors of the alternative pathways, followed by inhibition of the target pathway. Dependency is calculated using the equation shown here. In this example, HepG2 cells were tested for Glutamine Pathway Capacity (n=3). Eto and UK5099 were injected following the third rate measurement (Baseline measurement). The sixth rate measurement following this injection is used for the calculation to allow sufficient time for the compounds to have a complete effect (Other 2 Inhibitors measurement). The final rate measurement (All Inhibitors) is used to complete the equation.

Figure 4 Fuel Flexibility: Glutamine Oxidation Pathway Example Determination of Flexibility requires two groups: one Dependency group and one Capacity group (Figure 2 on page 8 and Figure 3 on page 9). Fuel Flexibility is calculated as the difference between Capacity and Dependency. All three parameters (Dependency, Capacity, and Flexibility) are displayed as a stacked bar chart when using the Agilent Seahorse XF Mito Fuel Flex Test Report Generator. See "Data Analysis" on page 21 for further information.

Glossary

Baseline Respiration Rate of oxygen consumption due to fuel oxidation under initial assay conditions.

Fuel A substrate or nutrient that is used by cells and oxidized in the mitochondria. In this assay, the mitochondrial oxidation of glucose, glutamine, or long chain fatty acids is measured.

Fuel Pathway A series of biochemical processes that convert fuels into metabolites that are oxidized in the mitochondria (example: the conversion of glucose to pyruvate and transport of pyruvate into mitochondria).

Fuel Dependency The measurement of cells' reliance on a particular fuel pathway to maintain baseline respiration.

Fuel Capacity The ability of a cell's mitochondria to oxidize a fuel when other fuel pathways are inhibited.

Fuel Flexibility The difference between fuel capacity and dependency, that is, the ability of cells to increase oxidation of a particular fuel to compensate for inhibition of alternative fuel pathway(s).

Agilent Seahorse XF Mito Fuel Flex Test Kit User Manual

Kit Information

2

Kit Contents 11 Kit Shipping and Storage 11 Additional Required Items 12

Kit Contents

The Agilent Seahorse XFp Mito Fuel Flex Test Kit contains sufficient compounds to complete six fuel dependency or combined dependency and flexibility tests (Figure 5 on page 13). The kit includes six foil pouches, each pouch contains one tube of each of the following compounds.

Table 1Kit compounds

Compound	Cap color	Amount per tube (nmol)
BPTES	Grey	84
Etomoxir	Green	112
UK5099	Orange	56

Kit Shipping and Storage

Product ships at ambient temperature in an insulated cooler box. Product should be stored at -20 $^{\circ}$ C for up to 1 year from the date of manufacture (listed on package).

Additional Required Items

The following items are also required for performing Seahorse XF Mito Fuel Flex Tests, but they are not supplied with the kits.

Table 2

ltem	Supplier	Catalog number
Agilent Seahorse	Agilent	
XFe/XF Analyzer	Technologies	
Agilent Seahorse	Agilent	102353-100
XF Base Medium	Technologies	
Agilent Seahorse	Agilent	
XFe/XF FluxPak	Technologies	
100 mM Pyruvate	Sigma	S8636 or
	-	equivalent
200 mM Glutamine	Sigma	G8540 or
	-	equivalent
2.5 M Glucose	Sigma	G8769 or
	0	equivalent
Microfuge tubes	Various	0.5-1.5 mL capacity
Narrow p1000	Fisher Scientific	02-707-402
pipette tips		(SureOne [™]
5-15 mL capacity	Various	Micropoint) or
tubes	1010	reagent trough

Agilent Seahorse XF Mito Fuel Flex Test Kit User Manual

Assay Workflow

Day prior to assay 14 Day of Assay 14 Running the Assay 20 Data Analysis 21

3

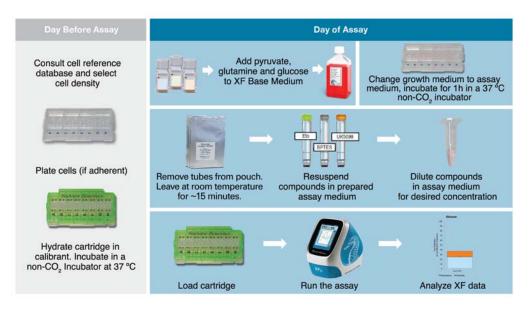


Figure 5 Agilent Seahorse XF Mito Fuel Flex Test Assay Workflow for the Agilent Seahorse XFe/XF Analyzers

Day prior to assay

- 1 Turn on the Agilent Seahorse XFe/XF Analyzer, and let it warm up overnight (minimum 5 hours).
- 2 Plate cells at a previously determined optimized density in the Agilent Seahorse XF Cell Culture Microplate using the appropriate cell culture growth medium. Refer to Basic Procedures for the Agilent Seahorse XF Analyzer at:

http://www.agilent.com/en-us/products/cell-analysis-(seaho rse)/basic-procedures-to-run-an-xf-assay

- 3 Hydrate a sensor cartridge in Agilent Seahorse XF Calibrant at 37 °C in a non-CO₂ incubator overnight. Refer to Basic Procedures for the Agilent Seahorse XF Analyzer.
- 4 Access and customize the Dependency and Flexibility assay templates for the Seahorse XF Mito Fuel Flex Test using Wave Desktop. Import the customized assay template to the Agilent Seahorse XFe/XF Analyzer to run the assay. For instructions and to download Wave Desktop visit.

http://www.agilent.com/en-us/products/cell-analysis-(seaho rse)/software-download-for-wave-desktop

Day of Assay

Prepare assay medium

- 1 Prepare assay medium by supplementing Agilent Seahorse XF Base Medium. Seahorse recommends 1 mM pyruvate, 2 mM glutamine, and 10 mM glucose as a starting point; however, the desired medium composition can be varied depending on cell type or *in vitro* culture conditions. Refer to Basic Procedures for your analyzer.
- 2 Warm assay medium to 37 °C.
- **3** Adjust pH to 7.4 with 0.1 N NaOH (Note: sterile filtration following pH adjustment is recommended).
- 4 Keep assay medium at 37 °C until ready to use.

Prepare Agilent Seahorse XF Cell Culture Microplate for assay

- 1 Remove cell culture microplate from 37 °C CO₂ incubator and examine cells under microscope to confirm confluent.
- 2 Remove assay medium from water bath.
- 3 Remove the cell culture growth medium in the cell culture microplate, and wash with warm assay medium using a multichannel pipette. Remove the wash and add assay medium to total volume of 180 μL (for Agilent Seahorse XF96 Microplates) or 500 μL (for Agilent Seahorse XF24 Microplates). Place the cell culture microplate into a 37 °C non-CO₂ incubator for 1 hour prior to the assay.

Removing reagent caps

Hold tube in gloved hand and roll thumb in forward motion over cap to loosen or, using the decapping tool provided, insert tooth of decapper into inner lip of cap and gently rotate the tool backwards.

Figure 6 Removing reagent cap

Prepare stock compounds

Important: Use compounds the same day they are reconstituted. Do not refreeze. Discard any remaining compound. Refer to "Removing reagent caps" on page 15 for instructions on removing the reagent caps.

- 1 Remove one foil pouch from Agilent Seahorse XF Mito Fuel Flex Test Kit box. Return box with remaining kits to -20 °C.
- 2 Remove three tubes from the pouch, and place in a small tube rack. Allow the compounds to warm to room temp for approximately 15 minutes.
- 3 Resuspend the contents of each tube with prepared assay medium in volumes described in Table 3 with a pipette. Place cap on tube, and vortex for 1 minute to solubilize the compounds.

Compound name	Volume of assay medium (µL)	Stock concentration (µM)	10x Port concentration (µM)	Final assay well concentration (µM)
BPTES	700	120	30	3.0
Etomoxir	700	160	40	4.0
UK5099	700	80	20	2.0

Table 3Stock solution preparation

Prior to loading a sensor cartridge

Refer to the Basic Procedure for your analyzer for proper cartridge loading technique.

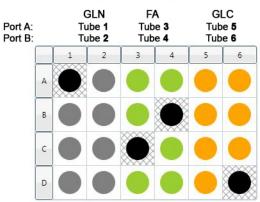
For each dependency assay, one group is needed for each fuel of interest.

For a Flexibility test, two groups are needed for each fuel of interest, one Dependency and one Capacity group.

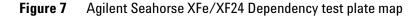
Load compounds into the appropriate ports of a hydrated sensor cartridge (Refer to Tables 4-6). If using a template, follow the loading scheme provided on the **Plate Map** tab or redistribute groups appropriately (Refer to Figures 7-9).

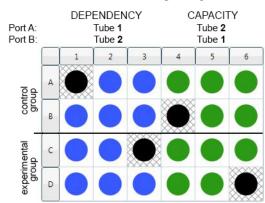
Agilent Seahorse XFe/XF24: Compound preparation and sensor cartridge loading

Table 410x Compound preparation for a 24 well dependency test of all three fuel pathwaysFor a 24 well dependency test of a single pathway see Table 5.

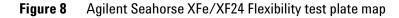

Agilent Seahorse XFe/XF24	Tube label	Contents	Volume of BPTES (µL)	Volume of ETO (µL)	Volume of UK5099 (µL)	Volume of assay medium (µL)	Total volume (µL)
Glutamine oxidation	1	BPTES	220	Х	Х	660	880
	2	ETO/UK5099	Х	220	220	440	880
Fatty acid	3	ETO	Х	220	Х	440	880
oxidation	4	BPTES/UK5099	220	Х	220	440	880
Glucose oxidation	5	UK5099	Х	Х	220	660	880
	6	BPTES/ETO	220	220	Х	440	880

Agilent Seahorse XFe/XF24	Tube label	Contents	Volume of BPTES (µL)	Volume of ETO (µL)	Volume of UK5099 (µL)	Volume of assay medium (µL)	Total volume (µL)
Glutamine oxidation	1	BPTES	700	Х	Х	2100	2800
	2	ETO/UK5099	Х	700	700	1400	2800
Fatty acid	3	ETO	Х	700	Х	2100	2800
oxidation	4	BPTES/UK5099	700	Х	700	1400	2800
Glucose oxidation	5	UK5099	Х	Х	700	2100	2800
	6	BPTES/ETO	700	700	Х	1400	2800


 Table 5
 10x Compound preparation for a 24 well flexibility test (choose one fuel pathway)

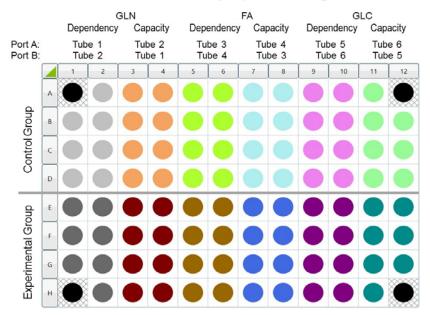

 Table 6
 Loading Sensor Cartridge. For a Flexibility test run both Dependency and Capacity tests

Agilent Seahorse XFe/XF24	Tube label	Contents	Port	XFe/XF24
Glutamine	1	BPTES	А	56 µL
dependency	2	ETO/ UK5099	В	62 µL
Glutamine capacity	2	ETO/ UK5099	А	56 µL
	1	BPTES	В	62 µL
Fatty acid dependency	3	ETO	А	56 µL
	4	BPTES/UK5099	В	62 µL
Fatty acid capacity	4	BPTES/UK5099	А	56 µL
	3	ETO	В	62 µL
Glucose dependency	5	UK5099	А	56 µL
	6	BPTES/ ETO	В	62 µL
Glucose capacity	6	BPTES/ ETO	А	56 µL
	5	UK5099	В	62 µL



XF^e/XF24 Dependency Experiment

XF^e/XF24 Flexibility Experiment


Agilent Seahorse XFe/XF96: Compound preparation and sensor cartridge loading

Agilent Seahorse XFe/XF96	Tube label	Contents	Volume of BPTES (µL)	Volume of ETO (µL)	Volume of UK5099 (µL)	Volume of assay medium (µL)	Total volume (µL)
Glutamine oxidation	1	BPTES	220	Х	Х	660	880
	2	ETO/UK5099	Х	220	220	440	880
Fatty acid	3	ETO	Х	220	Х	660	880
oxidation	4	BPTES/UK5099	220	Х	220	440	880
Glucose oxidation	5	UK5099	Х	Х	220	660	880
	6	BPTES/ETO	220	220	Х	440	880

Table 710x Compound preparation for a 96 well dependency or flexibility test

Table 8 Loading sensor cartridge for a flexibility test perform both dependency and capacity tests

Agielnt Seahorse XFe/XF96	Tube label	Contents	Port	Agilent Seahorse XFe/XF96
Glutamine	1	BPTES	А	20 µL
dependency	2	ETO/ UK5099	В	22 µL
Glutamine capacity	2	ETO/ UK5099	А	20 µL
	1	BPTES	В	22 µL
Fatty acid dependency	3	ETO	А	20 µL
	4	BPTES/UK5099	В	22 μL
Fatty acid capacity	4	BPTES/UK5099	А	20 µL
	3	ETO	В	22 µL
Glucose dependency	5	UK5099	А	20 µL
	6	BPTES/ ETO	В	22 μL
Glucose capacity	6	BPTES/ ETO	А	20 µL
	5	UK5099	В	22 μL

XFe/XF96 Flexibility Experiment Design

Figure 9 Agilent Seahorse XFe/XF96 Flexibility test plate map

Running the Assay

Load template onto the Agilent Seahorse XFe Analyzer

(If template(s) already present, skip this step.)

Personal computer (internet access required):

- **1** Open Wave Desktop 2.3.
- 2 Select the Seahorse XF Mito Fuel Flex Template(s) to export and click **Export**.
- 3 Save the assay template(s) to a USB flash drive or network drive (if Agilent Seahorse XFe Analyzer is networked).

Seahorse Agilent XFe96/XFe24 Analyzer:

- 1 Insert the USB flash drive to the front USB port on the XFe Controller and wait ~10 seconds.
- **2** Press **Import** (bottom of the New view).
- **3** Locate the assay template(s) on the USB flash drive or network drive and click **Open**.
 - Repeat for next assay template (if applicable).

4	The imported assay template(s) are now available for
	selection on the New view on Wave Controller.

Run the Seahorse XF Mito Fuel Flex Test Assay Template:

	1	Double-click the Dependency or Flexibility assay template from the list of available templates (or select the template and click Design).
	2	Groups Definitions Tab - No action required. Add or modify groups and conditions for the assay.
	3	Plate Map Tab - No action required. Modify the Plate Map to select assay wells for each group.
	4	Instrument Protocol Tab - No action required. Modify the Instrument Protocol to add additional measurement cycles.
	5	Review and Run Tab - Press Start Run when ready.
	6	When prompted, place the loaded sensor cartridge with the calibrant plate into the Agilent Seahorse XFe Analyzer, then click I'm Ready . Calibration will take approximately 15-30 minutes.
N 0	TE	move cartridge lid and verify correct plate orientation.
	7	Click I'm Ready after calibration to load the cell culture microplate.
	8	Click I'm Ready to close the tray door and begin the assay.
Data Analysis		
	su in ar in	f particular importance for the best quality data are items ich as optimal cell density, consistent cell seeding (as reflected CVs of absolute baseline rates among similarly treated wells), ind stable baseline OCR values of the cell line/type being used the assay. For all XF assays, significant variability between ells within the same group indicates the need for additional

optimization of cell culture, cell seeding, or intervention/treatment conditions. If variability is high within a group, please review the Basic Procedures for your analyzer. For additional questions, please contact Technical Support.

After ensuring adequate data quality, proceed with data analysis using the Seahorse XF Mito Fuel Flex Test Report Generator. This report generator calculates the parameters of %Dependency, %Capacity, and %Flexibility with respect to each group or fuel tested. These parameters provide a relative comparison of mitochondrial fuel oxidation among groups during basal respiration conditions. It is also encouraged that absolute OCR values (in pmol/min) of control and experimental groups are reviewed for any significant changes in OCR baseline values between groups (measurement 3/measurement prior to any injection). These differences in OCR values between groups suggest some biological change, and should be incorporated into the final interpretation of Mito Fuel Flex Test results.

Export to the Seahorse XF Mito Fuel Flex Test Report Generator using Wave Desktop to generate a one-page Summary Report. The Report Generator automatically calculates percent Dependency, Capacity, and Flexibility, providing a simple, standardized output for analysis and interpretation of Seahorse XF Mito Fuel Flex Test data, and supports data analysis from all Agilent Seahorse XF Analyzers.

To download the Seahorse XF Mito Fuel Flex Test Report Generator and accompanying user guide visit:

http://www.agilent.com/en-us/products/cell-analysis-(seahorse)/report-generator-for-the-xf-mito-fuel-flex-test

Agilent Seahorse XF Mito Fuel Flex Test Kit User Manual

Frequently Asked Questions

What if all three inhibitors only cause a small decrease in total OCR?

Processes other than oxidation of these three fuels may contribute to baseline OCR. These processes may be broken down further into mitochondrial and nonmitochondrial oxygen consuming processes:

Other mitochondrial respiration: respiration dependent on an alternative substrate(s) being oxidized to support mitochondrial respiration, which may include (but not limited to) short and medium chain fatty acids and amino acids other than glutamine.

Nonmitochondrial oxygen consumption: consumption of oxygen by other biochemical processes in the cell. This includes (but is not limited to) very long chain fatty acids that get partially oxidized in the peroxisomes and other cellular enzymatic processes that consume oxygen. The nonmitochondrial fraction of total oxygen consumption can be measured using the Seahorse XF Cell Mito Stress Test.

Why is Dependency reported as zero?

If Dependency is not significantly above zero or negative due to well to well variability, there is no dependency on that particular substrate. If the cells are not dependent on the target fuel pathway, OCR may slightly increase following injection of inhibitor. When this occurs, Dependency is automatically set to zero (no dependence), and Flexibility will be equal to Capacity.

What does it mean if I have negative flexibility values?

When changes in OCR are small, well to well variability might lead to negative flexibility values. Negative flexibility values of less than 5 % are generally attributable to noise in the assay. If you detect significant negative flexibility, contact Technical Support.

How can I further diagnose or troubleshoot Mito Fuel Flex Test results?

The above potential issues described (apparent low response to inhibitors, 0 % dependency, or negative flexibility values) may be further diagnosed by performing (as a separate test or added group) a Mito Fuel Flex Test with only media injections (no inhibitors) to establish if baseline respiration changes significantly over the course of the assay. If the absolute respiration rates (OCR) in the absence of inhibitors trend significantly upward or downward throughout the assay, then the parameters of this test (relative % dependency, capacity and flexibility) will be either underestimated or exaggerated, respectively. This depends on the magnitude and direction of any baseline trends versus. the magnitude of change due to added inhibitors. To limit any upward/downward baseline trending OCR, ensure that cell culture and technical parameters of the assay have been thoroughly optimized.

Will these inhibitors and concentrations work with all cells?

Yes, the test uses all three compounds at concentrations well above their EC50 values for inhibition in mammalian cells. These values have been validated in a variety of cell lines and primary isolates. While most cell types or cell lines have an appreciable response to at least one inhibitor, not all cells will respond to all inhibitors. If the cells are not responsive to a particular inhibitor, they may not be dependent on that particular fuel pathway (that is, they are flexible with respect to the fuel used for oxidative phosphorylation).

How do I interpret ECAR and glycolysis in this assay?

Using combinations of inhibitors can confound interpretation of ECAR data with this test due to shifts in cellular ATP production and demand. For directly measuring glycolytic function, we recommend using the Seahorse XF Glycolysis Stress Test.

The recommended assay medium does not include fatty acid, can I add it?

Although not required, long chain fatty acid may be added to the medium. We recommend using a single species of long chain fatty acid, such as Seahorse XF Palmitate-BSA FAO Substrate, when testing exogenous fatty acid oxidation. NOTE: only oxidation of long-chain fatty acid, such as palmitate, is sensitive to inhibition by etomoxir.

Frequently Asked Questions

Frequently Asked Questions

© Agilent Technologies, Inc.

Printed in USA, March 2017 Revision C0

For research use only Not for use in diagnostic procedures

103260-400